Chemical Modification of Microcrystalline Cellulose: Improvement of Barrier Surface Properties to enhance Surface Interactions with some synthetic polymers for Biodegradable Packaging Material Processing and Applications in Textile, Food and Pharmaceutical Industry

نویسنده

  • S. D. Mohammed
چکیده

Gaseous acetylation of microcrystalline cellulose (MCC) was carried out to modify its chemical and physical properties and at the same time to preserve the morphology of cellulose microfibrils. Spectroscopic analysis of the samples was indicative of the success of the reaction as indicated by FT-IR and H-nmr studies. The chemically modified microcrystalline cellulose (MCC) were blended with high density polyethylene (HDPE) using novel solvents for dissolution of polyethylene to obtain microcrystalline modified polyethylene blends (MCCMPB). The blends showed improved properties such as, flexibility, smoothness, transparency, strength and biodegradability which is indicative of hydrophobicity improvement relative to non-modified samples. Modification was important so as to bring about changes in attractive and repulsive forces in cellulose in order to enhance surface interactions between cellulose with high density polyethylene based on the principle “like dissolves like”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles

Objective(s): Biodegradable film is widely used because it is free from synthetic substances and does not lead to environment pollution. This study aimed to prepare and characterize biodegradable sago starch films loaded with Carboxymethyl Cellulose nanoparticles. Methods: Sago starch films were prepared and plasticized with sorbitol/ glycerol by t...

متن کامل

Shelf Life Extension of Package’s Using Cupper/(Biopolymer nanocomposite) Produced by One-Step Process

ABSTRACT: The use of new compounds to increase the shelf life of more perishable foods based on nanoparticles and biodegradable polymers have been developed in packaging. Chitosan (Cts) is a natural biopolymer with excellent biodegradability and nontoxicity and antibacterial effect. In this research antibacterial copper nanoparticles (CuNPs) were incorporated in the biodegradable chitosan matri...

متن کامل

Biodegradable Whey Protein Edible Films as a New Biomaterials for Food and Drug Packaging

       Food packaging extensively uses plastic films and containers of petroleum-based polymers for their excellent functional properties and competitive price. Plastic packaging has become a central focus of waste reduction efforts, particularly in aesthetic terms of damage to flora and fauna. Presently, consumers require greater quality and longer shelf lives for their foodstuffs, while they ...

متن کامل

Synthesis of LDPE/Nano TiO2 Nanocomposite for Packaging Applications

Improving barrier properties through the use of nanocomposites is an important area of research, especially for the food packaging industry. In this work, Titanium dioxide (TiO2 )/Low density Poly Ethylene (LDPE) nanocomposites were synthesized as the oxygen barrier layers through the co-extrusion process. The Oxygen permeability of the nanocomposite with 4% of TiO2 decreased for about 16% comp...

متن کامل

Preparation and Characterization of a Bionanopolymer Film for Packaging Applications (a Case Study: Walnut Packaging)

The carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) film were prepared by adding three levels of nanoclay particles (0.5, 1 and 3%) using solution casting evaporation method. The incorporation of nanoclay on mechanical, water vapor permeability, and oxygen barrier properties of CMC/PVA-based film was investigated. The best result was obtained through the nanocomposite film contain 3% nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011